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Abstract

Scalability of distributed deep learning (DL) training with
parameter server architecture is often communication con-
strained in large clusters. There are recent efforts that use a
layer by layer strategy to overlap gradient communication
with backward computation so as to reduce the impact of
communication constraint on the scalability. However, the
approaches cannot be effectively applied to the overlap be-
tween parameter communication and forward computation.
In this paper, we propose and design iBatch, a novel commu-
nication approach that batches parameter communication and
forward computation to overlap them with each other. We for-
mulate the batching decision as an optimization problem and
solve it based on greedy algorithm to derive communication
and computation batches. We implement iBatch in the open-
source DL framework BigDL and perform evaluations with
various DL workloads. Experimental results show that iBatch
improves the scalability of a cluster of 72 nodes by up to 73%
over the default PS and 41% over the layer by layer strategy.

Introduction
Deep learning (DL) (LeCun, Bengio, and Hinton 2015),
a class in machine learning (ML) field, has achieved re-
markable success across a wide range of applications, in-
cluding image recognition, object detection, and natural
language processing. In DL, deep neural network (DNN)
models achieve high accuracy through the use of deeply
layered structures with many parameters (He et al. 2016;
Szegedy et al. 2017).

In order to reduce the training time of DNN model-
s in a single compute node, DL frameworks (e.g., Tensor-
Flow (Abadi et al. 2016), BigDL (Wang et al. 2018c)) im-
plement distributed DNN models, in which the training da-
ta is partitioned over distributed clusters with multiple n-
odes by taking advantage of data parallelism. Among the
distribution implementations, parameter server (PS) archi-
tecture (Li et al. 2014; Dai et al. 2015; Xing et al. 2015)
is a common communication architecture that synchronizes
parameter updates (i.e., gradients) among multiple nodes. P-
S separates the cluster nodes into workers and servers. The
servers serve as a distributed storage of model parameters. In
the default setting, the one iteration execution contains four
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sequential operations. First, the workers pull the parameters
from the servers. Then, they conduct forward computation
based on the pulled parameters, and compute the gradients
through backward computation. Finally, they push the gra-
dients during each synchronization into the servers.

However, as the number of nodes in a cluster increases,
the distributed implementation with PS often scales poor-
ly. For instance, a recent study (Zhang et al. 2017) shows
that training VGG19-22K network that contains 229M (mil-
lion) parameters with open-source TensorFlow on 32 nodes
can be slower than training on a single node. The reason
is that when the number of nodes increases, more nodes
share the network bandwidth of the cluster so that the avail-
able bandwidth for each node decreases (Ahmad et al. 2014;
Wang et al. 2018b). As the result, the parameter communi-
cation time and gradient communication time increase, pro-
longing the execution time of one iteration. Thus, the cluster
network bandwidth becomes a severe bottleneck for large-
scale distributed DL training.

Previous efforts reduce the impact of communication con-
straint on the scalability of distributed DNN model training
from two aspects. From the aspect of algorithm, Gradient
Quantization (Zhou et al. 2016; Wen et al. 2017; Micikevi-
cius et al. 2018) and Sparsification (Aji and Heafield 2017;
Lin et al. 2018; Chen et al. 2018) reduce the gradient com-
munication time by cutting down the size of gradients in
communication. These techniques need to balance the trade-
off between the model accuracy and the size of gradients.
From the aspect of PS design, Poseidon (Zhang et al. 2017)
proposes a novel PS architecture, in which gradient commu-
nication is overlapped with backward computation layer by
layer to reduce the execution time of these two operations.
With the layer by layer strategy, the gradients of each lay-
er are pushed to the servers immediately after the backward
computation in the layer. However, Poseidon does not over-
lap parameter communication with forward computation.

The trend of Gradient Quantization and Sparsification
continues reducing the size of gradients in communication.
As the result, parameter communication accounts for an in-
creasingly large part of the total communication between the
workers and the servers. To this end, we propose to overlap
parameter communication with forward computation so as
to reduce the execution time including parameter commu-
nication time and forward computation time. However, the



layered model structures of DNN pose severe challenges on
the overlap so that the straightforward layer by layer over-
lap strategy cannot be effectively applied here. First, we
find that pulling parameters from the servers layer by lay-
er brings significant overhead in parameter communication.
Second, the parameter communication time can be longer
or shorter than the forward computation time across lay-
ers so that the communication can only be partially over-
lapped with the computation. For instance, the communica-
tion time is usually much longer than the computation time
in fully-connected layers, while the computation time is usu-
ally much longer than the communication time in convolu-
tional layers (Krizhevsky, Sutskever, and Hinton 2012).

We propose and design iBatch, a novel communication
approach that batches parameter communication and for-
ward computation to overlap them with each other. Instead
of using a constant batch size, iBatch uses communication
and computation batches with various sizes in order to max-
imize the overlap. Specifically, we first profile the parameter
communication time and the forward computation time in
DNN model training. Then, we formulate the batching de-
cision as an optimization problem of execution time mini-
mization based on the profile. Finally, we use greedy algo-
rithm that maximizes the overlap to solve the optimization
problem and derive the batches.

In a nutshell, we make the following technical contribu-
tions: 1) We find the naive implementation of the layer by
layer strategy is not effective to overlap parameter communi-
cation with forward computation. 2) We design iBatch based
on problem formulation and algorithm design to conduct
the overlap through batching parameter communication and
forward computation. 3) We implement iBatch in the open-
source DL framework BigDL and perform comprehensive e-
valuations with various DL workloads. Experimental results
show that iBatch achieves up to 45x speedup for VGG19-
22K network in a cluster of 72 nodes, 73% improvement
over the default PS (26x speedup) and 41% improvement
over the layer by layer strategy (32x speedup).

Related Work
Distributed DL frameworks with PS. Based on PS ar-
chitecture (Li et al. 2014; Dai et al. 2015), a number of
distributed DL frameworks have been developed. DistBe-
lief (Dean et al. 2012) is a distributed framework that trains
deep networks using asynchronous stochastic gradient de-
scent. TensorFlow (Abadi et al. 2016) is Google’s distribut-
ed DL framework that uses a dataflow graph to represen-
t DL models and synchronizes model parameters via PS.
MXNet (Chen et al. 2015) is another DL framework that
uses PS for distributed execution and supports graph repre-
sentations for DL models. The above frameworks, however,
lack the benefits of tight integration with general-purpose
computational frameworks such as Apache Spark (Zaharia
et al. 2012). To this end, BigDL (Wang et al. 2018c) is pro-
posed as a distributed DL library for Spark. With BigDL,
users can write their DL applications as standard Spark pro-
grams that can directly run on top of existing Spark clusters.

Distributed DL implementation based on PS has limited
scalability due to the high volume of communication in pa-

rameter synchronization. Thus, there are techniques to re-
duce network communication. Poseidon (Zhang et al. 2017)
uses wait-free backpropagation that overlaps the backward
propagation computation with the gradient communication.
It also uses a hybrid communication scheme that optimizes
the number of bytes required to synchronize each layer.
However, the layer by layer overlap strategy is not efficient
for overlapping the forward propagation computation with
the parameter communication.

Gradient Quantization and Sparsification that reduce the
size of data in communication are also extensively s-
tudied. In gradient quantization, 1-bit SGD (Seide et al.
2014) is proposed to reduce gradients transfer data size
and achieved 10x speedup in traditional speech application-
s. TernGrad (Wen et al. 2017) uses 3-level gradients and
DoReFa-Net (Zhou et al. 2016) uses 1-bit weights with 2-
bit gradients. In gradient sparsification, threshold quantiza-
tion (Strom 2015) and gradient dropping (Aji and Heafield
2017) are proposed to sparsify the gradients by a single
threshold based on the absolute value. However, the thresh-
old is hard to choose in practice. AdaComp (Chen et al.
2018) proposes to automatically tune the compression rate
depending on local gradient activity. DGC (Lin et al. 2018)
reduces the communication bandwidth through momentum
correction, local gradient clipping, momentum factor mask-
ing, and warm-up training. These techniques need to balance
the trade-off between model accuracy and the size of data in
communication.

Distributed DL frameworks without PS. There are DL
frameworks that make use of decentralized training to re-
move the burden of PS deployment in distributed environ-
ments while maintaining data parallelism. In MALT (Li et
al. 2015), workers exchange gradients with a subset of work-
ers selected by a Halton sequence. Due to the synchroniza-
tion delay, it suffers from slow convergence, especially for
complex neural network models. SFB (Xie et al. 2016) and
Ako (Watcharapichat et al. 2016) parallelize DL applications
using peer-to-peer communication.

Motivation
In this section, we first introduce the PS architecture for par-
allelizing DNN training on clusters. We then describe the
communication and computation overlap that takes advan-
tage of decomposing the procedure of DNN training into a
sequence of communication and computation operations. Fi-
nally, we provide a case study to show the potential gain of
overlapping parameter communication and forward compu-
tation in a batch of layers.

Parameter Server Architecture
Most distributed ML/DL frameworks (e.g., Spark, MXNet,
TensorFlow, BigDL) employ the PS architecture to train
DNN models iteratively as shown in Figure 1. In this ar-
chitecture, there are two types of cluster nodes: servers and
workers. Specifically, the parameters in a DNN model are
partitioned among the servers and the training data are split
among the workers. In one iteration, each worker first pulls
the parameters from the servers and computes parameter up-
dates (i.e., gradients) locally through forward and backward



Figure 1: The parameter server architecture.

propagation computation using its data partition. The for-
ward computation computes the value of an objective func-
tion (i.e., loss function) based on the parameters. The back-
ward computation generates the gradients based on the value
of objective function. The workers then push the gradients to
the servers. After receiving the gradients, the servers update
the model parameters based on Stochastic Gradient Descent
algorithm. There are different types of synchronizations be-
tween the servers and the workers, such as BSP (Zaharia
et al. 2012), A-BSP (Wang et al. 2018a), SSP (Xing et al.
2015), and ASP (Chilimbi et al. 2014).

Communication and Computation Overlap
In the default PS, each worker conducts four operations se-
quentially in one iteration: parameter communication (i.e.,
pulling parameters), forward computation, backward com-
putation, and gradient communication (i.e., pushing gradi-
ents). The four operations are defined as Pt, FCt, BCt, and
Gt, respectively, where t denotes the number of iterations.
Thus, the procedure of DNN training in iteration t can be
notated as [Pt, FCt, BCt, Gt].

The forward and backward computation is performed
through DNN layer by layer. If we define a forward and a
backward computation through the lth layer of a network
as fclt and bclt, respectively, the computation [FCt, BCt]
is notated as [fclt, fc

2
t , ..., fc

L
t , bc

L
t , bc

L−1
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denotes the number of layers in the network. Meanwhile, as
every layer of a network contains an independent set of pa-
rameters, Pt and Gt can be decomposed as [p1t , p
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L
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pulling the parameters of layer l and glt is defined as pushing
the gradients of layer l. Thus, the training procedure can be
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as illustrated in Figure 2(a). The communication and compu-
tation perform sequentially, waiting for each other to finish.

The communication can be overlapped with computation
based on two independencies in the training procedure: (1)
the parameter communication plt is independent of the for-
ward computation fcit (i < l); (2) the gradient communi-
cation glt is independent of the backward computation bcit
(i > l). As the result, two overlaps can be performed
as shown in Figures 2(b) and 2(c): (1) The overlap be-
tween parameter communication and forward computation;
(2) The overlap between gradient communication and back-
ward computation. Previous efforts explored the latter over-
lap by overlapping gradient communication with backward
computation layer by layer. Specifically, glt is performed im-
mediately after finishing bclt so that glt and bcit (i > l) can be
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(a) The procedure of DNN training in iteration t.
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(b) The overlap between parameter
communication and forward com-
putation in iBatch.
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(c) The overlap between gradient
communication and backward com-
putation in previous efforts.

Figure 2: The communication and computation overlap.

Figure 3: The parameter communication time and the for-
ward computation time in each layer in GoogLeNet.

executed concurrently without blocking each other. In con-
trast, iBatch explores the former overlap through batching
parameter communication and forward computation.

Case Study
The straightforward layer by layer strategy cannot be ef-
fectively applied to overlap parameter communication with
forward computation due to two reasons. First, this strate-
gy brings significant overhead in parameter communication.
Specifically, the total parameter communication time de-
pends on two factors: the number of communications and the
time in each communication (Lee et al. 2017). The time in
each communication consists of a startup time (e.g., search-
ing the servers that store parameters and handling TCP con-
nections) and a transfer time. The startup time is indepen-
dent of the size of parameters in the communication and the
transfer time is in direct proportion to the size. Thus, if a
worker pulls the parameters in a neural network layer by
layer, the number of communications equals the number of
layers in the network, leading to significant overhead in the
startup time.

Second, the parameter communication time can be longer
or shorter than the forward computation time across layers.
As the result, the communication can only be partially over-
lapped with the computation. To validate this, we created a
BigDL cluster containing 6 workers and 6 servers and ran



(a) Sequential execution of communication and computation in the default PS without overlap.

(b) Overlap the communication with computation layer by layer.

(c) Overlap the communication with computation in a batch of layers with iBatch.
Figure 4: The procedure of parameter communication and forward computation with three communication approaches. The
time in each communication is divided into a startup time and a transfer time. The number denotes the layer in the network.

the representative GoogLeNet (Szegedy et al. 2015) using
the data from Imagenet (Krizhevsky, Sutskever, and Hinton
2012). Figure 3 illustrates the communication time and the
computation time in each layer (adjacent convolutional layer
and pooling layer are regarded as one layer since there are
no parameters in pooling layers). The result shows that the
communication and computation time varies across layers.
The communication time is much longer than the computa-
tion time in fully-connected layers (e.g., layer 11). The com-
putation time is much longer than the communication time
in convolutional layers (e.g., layer 2).

According to the time in Figure 3, we present the proce-
dure of parameter communication and forward computation
with the default PS, the layer by layer strategy, and iBatch
in Figure 4. In the default PS, a worker pulls all parameters
from the servers once and then conducts the forward com-
putation layer by layer. Figure 4(a) illustrates the timeline
of this procedure. The figure shows that there is only one
startup time since the number of communications is one.
However, this procedure is highly sequential, in which the
computation waits for the communication to finish.

With the layer by layer strategy, a worker pulls the pa-
rameters from the servers layer by layer and conducts the
forward computation in each layer once the corresponding
parameters are pulled from the servers. We present the time-
line of this procedure in Figure 4(b). The figure shows that
the communication is partially overlapped with the com-
putation. However, this strategy brings significant overhead
(i.e., multiple startup time) since the number of communi-
cations equals the number of layers. In some layers (e.g.,
layers 10 and 11), the forward computation has to wait for
a long time before the communication finishes, prolonging
the execution time.

iBatch proposes to overlap the communication with the
computation in a batch of layers as shown in Figure 4(c).
Concretely, a worker pulls all parameters through three
batches. The first batch pulls the parameters from layers 1
to 5. The second batch pulls the parameters from layers 6
to 10. The third batch pulls the parameters from layers 11
to 12. Compared with the layer by layer strategy, the startup

time is saved in iBatch since the number of communications
is reduced to three. Also, with iBatch, more communication
is overlapped with the computation in this case, leading to a
significant reduction in the execution time.

iBatch Design and Implementation
The goal of iBatch is to minimize the execution time includ-
ing the total parameter communication time and the forward
computation time. We first formulate the batching decision
as an optimization problem of execution time minimization
based on the profile of the parameter communication time
and the forward computation time. Then, we use greedy al-
gorithm that maximizes the overlap to solve the problem and
derive communication and computation batches.

Given a cluster and a neural network, we measure the for-
ward computation time in each layer in the network and de-
fine the time in ith layer as Ci. For the parameter commu-
nication, we measure the startup time as well as the transfer
time in each layer. The startup time is notated as Ts and the
transfer time in ith layer is notated as T i

t .

Problem Formulation
According to the case study, the execution time consists of
three parts. The first part is the parameter communication
time in the first batch (e.g., layers 1 to 5 in Figure 4(c)). The
communication in this part cannot be overlapped with com-
putation since there are no parameters for any computation.
The second part is the parameter communication time from
the second batch to the last batch (e.g., layers 6 to 10 and lay-
ers 11 to 12 in Figure 4(c)). In this part, the communication
in one batch is independent of the computation in its previ-
ous batch so that the communication can be overlapped with
the computation. The third part is the forward computation
time in the last batch (e.g., layers 11 to 12 in Figure 4(c)).
The computation in this part cannot be overlapped with any
communication since there is no communication in the part.

To formulate the execution time, the number of batches in
a L-layer network is notated as N and the batches are notated
as [[l0 + 1 = 1, l1], [l1 + 1, l2], ..., [lN−1 + 1, lN = L]],



where li denotes the last layer in batch i. In other words,
batch i includes layers from li−1+1 to li. For instance, batch
1 (i.e., the first batch) includes layers from 1 to l1. Batch N
(i.e., the last batch) includes layers from lN−1 +1 to L. The
batches in Figure 4(c) is [[1, 5], [6, 10], [11, 12]].

Based on the notations, the first part in the execution time
is formulated as:

EXE1 = Ts +
∑

1≤i≤l1

T i
t (1)

In the second part, the number of communications is N-1.
So, the total startup time is (N − 1) ∗ Ts and this part is
formulated as:

EXE2 = Ts +
∑

l1+1≤i≤l2

T i
t + ...+ Ts +

∑
lN−1+1≤i≤L

T i
t

= (N − 1) ∗ Ts +
∑

l1+1≤i≤L

T i
t

(2)
The third part is formulated as:

EXE3 =
∑

lN−1+1≤i≤L

Ci

(3)

We define the execution time as ExeT ime. Thus, we mini-
mize ExeT ime by solving the following optimization prob-
lem:

min EXETime = EXE1 + EXE2 + EXE3 (4)

subject to

Ts +
∑

lk+1≤i≤lk+1

T i
t >

∑
lk−1+1≤i≤lk

Ci 0 < k < N (5)

Objective Eq. 4 minimizes the sum of the three parts in
the execution time. Constraint Eq. 5 ensures the overlap be-
tween the communication in batch k+1 and the computation
in batch k.

Algorithm Design
To minimize the execution time, li (0 < i < N ) in the batch-
es is derived one by one through greedy algorithm. Specif-
ically, we use two greedy algorithms that makes greedy
choices at each step to ensure that the objective function in
Eq. 4 is optimized. Each algorithm derives one candidate of
communication and computation batches. From two candi-
dates of the batches, we choose the one with the minimal
execution time to batch parameter communication and for-
ward computation.

Algorithm 1 generates li from l1 to lN . The first step (lines
2 to 5) that chooses l1 and l2 decides the communication
time EXE1 and the overlapping time between the commu-
nication in the second batch and the computation in the first
batch. Thus, the greedy choice maximizes the overlapping
time while minimizing the communication time. Specifical-
ly, lines 2 to 3 first construct a set of pairs S2 that meet Con-
straint Eq. 5. That is, for all pairs in S2, the communication
in the second batch can be overlapped with the computa-
tion in the first batch. From S2, line 4 then selects the pairs

with the maximum overlapping time. Finally, from the pairs
selected by line 4, line 5 selects one with the minimum com-
munication time in the first batch. In the rest steps (lines 7
to 13), the algorithm chooses one layer in one step. For in-
stance, the choice of layer lk decides the overlapping time
between the communication in batch k and the computa-
tion in batch k − 1. Thus, the greedy choice maximizes the
overlapping time by minimizing the difference between the
communication time in batch k and the computation time in
batch k − 1.

Algorithm 1
Greedy algorithm that generates li from l1 to lN−1

1: /* The first step */
2: Derive set S1 that contains all pairs of [l1, l2];
3: From S1, select pairs that meet Eq. 5 and form them as set S2;
4: From S2, select pairs with the maximum

∑
1≤i≤l1

Ci;
5: From the selected pairs, choose one with the minimum

Ts +
∑

1≤i≤l1
T i
t ;

6: /* The rest steps */
7: Previous two layers in batches: lk−1 = l2, lk−2 = l1,;
8: repeat
9: Define current layer as lk;

10: From [lk−1 + 1, L], select all lx that meet
Ts +

∑
lk−1+1≤i≤lx

T i
t >

∑
lk−2+1≤i≤lk−1

Ci;
11: From the selected lx, choose one as lk that has the minimum

Ts +
∑

lk−1+1≤i≤lk
T i
t −

∑
lk−2+1≤i≤lk−1

Ci;
12: lk−2 = lk−1;
13: lk−1 = lk;
14: until lk−1 = L;

Algorithm 2 generates li from lN−1 to l1. The first step
(lines 2 to 5) that chooses lN−1 and lN−2 decides the com-
putation time EXE3 and the overlapping time between the
communication in the last batch and the computation in
batch N−1. Thus, the greedy choice maximizes the overlap-
ping time while minimizing the computation time. Specifi-
cally, lines 2 to 3 first construct a set of pairs S2 that meet
Constraint Eq. 5. That is, for all pairs in S2, the communica-
tion in the last batch can be overlapped with the computation
in batch N−1. From S2, line 4 then selects the pairs with the
maximum overlapping time. Finally, from the pairs selected
by line 4, line 5 selects one with the minimum computation
time in the last batch. In the rest steps (lines 7 to 13), the
algorithm chooses one layer in one step. For example, the
choice of layer lk decides the overlap between the commu-
nication in batch k + 1 with the computation in batch k.
Thus, the greedy choice maximizes the overlapping time by
minimizing the difference between the communication time
in batch k + 1 and the computation time in batch k.

Implementation
We have implemented iBatch in BigDL (ver-
sion 0.5.0) by modifying source files in package
com.intel.analytics.bigdl.

Computation and communication profile. The
forward function in AbstractModule.scala takes a
layer as input and performs the forward computation of the
layer. Thus, the forward computation time Ci is profiled by



Algorithm 2
Greedy algorithm that generates li from lN−1 to l1
1: /* The first step */
2: Derive set S1 that contains all pairs of [lN−1, lN−2];
3: From S1, select pairs that meet Eq. 5 and form them as set S2;
4: From S2, select pairs with the maximum∑

lN−2+1≤i≤lN−1
Ci;

5: From the selected pairs, choose one with the minimum∑
LN−1≤i≤L Ci;

6: /* The rest steps */
7: Next two layers in batches: lk+1 = lN−2, lk+2 = lN−1;
8: repeat
9: Define current layer as lk;

10: From [0, lk+1 - 1], select all lx that meet
Ts +

∑
lk+1+1≤i≤lk+2

T i
t >

∑
lx+1≤i≤lk+1

Ci;
11: From the selected lx, choose one as lk that has the minimum

Ts +
∑

lk+1+1≤i≤lk+2
T i
t −

∑
lk+1≤i≤lk+1

Ci;
12: lk+2 = lk+1;
13: lk+1 = lk;
14: until lk+1 = 0;

Table 1: Neural networks for evaluation.
Model # Params Dataset

GoogLeNet 5M ILSVRC12
Inception-V3 27M ILSVRC12

VGG19 143M ILSVRC12
VGG19-22K 229M ImageNet22K

measuring the runtime of this function. The getWeights
function in AllReduceParameter.scala
first locates the parameters (i.e., on which
servers) using function getWeightBlockId
and then calls function fetchBlockSync in
BlockTransferService.scala to transmit the
parameters from the first layer to the last layer. Thus,
the transfer time T i

t is profiled by measuring the runtime
of fetchBlockSync. The runtime difference between
getWeights and fetchBlockSync is regarded as Ts.

Computation and communication overlap. To batch
the forward computation, we implemented a new func-
tion iBatchforward that takes batch i as input and
calls forward to perform the computation from layer-
s li−1 + 1 to li. To batch the parameter communication,
we modified the function getWeights and rename it as
iBatchgetWeights. The modified function takes batch
i as input, locates the parameters in the batch, and transmits
the parameters from layers li−1 + 1 to li. Default PS imple-
mentation in BigDL uses one thread to run getWeights
and forward sequentially without the overlap. To en-
able the overlap, we implemented two threads that concur-
rently run iBatchgetWeights input with batch i and
iBatchforward input with the previous batch i− 1.

Evaluation Setup
Testbed
We conduct our experiments on a CPU cluster in a private
cloud. The cloud runs on 8 HP BL460c G6 blade server-

s interconnected with 10Gbps global Ethernet. The number
of nodes in the cluster ranges from 1 to 72 to evaluate the
scalability of distributed DL. All nodes run Ubuntu Serv-
er 14.04 with Linux kernel 4.4.0-64. To achieve high per-
formance in the forward and backward computation, BigDL
uses Intel Math Kernel Library and multithreaded program-
ming in each computation task.

Dataset and DL Models
Our experiments focus on the image classification applica-
tions where DL is most successfully applied. We use two
well-known image classification datasets. (1) ImageNet22K,
the largest public dataset for image classification, includ-
ing 14.2 million labeled images from 21841 categories. (2)
ILSVRC12, a subset of ImageNet22K that has 1.28 million
of training images;

The scalability of distributed DL is evaluated using dif-
ferent neural networks: (1) GoogLeNet: a 22-layer convo-
lutional neural network with 5M parameters. (2) Inception-
V3: an improved version of GoogLeNet; (3) VGG19: a 16
convolutional layers and 3 fully-connected layers network,
in total 143M parameters; (4) VGG19-22K: an improved
version of VGG19 network (Zhang et al. 2017). The im-
proved network has 229M parameters. Table 1 lists their s-
tatistics and configurations in.

Metrics
The performance metrics include scalability and normal-
ized execution time ExeT ime. The scalability denotes the
speedup on throughput (number of iterations finished per
hour) compared with single node DL. We evaluate the per-
formance of three communication approaches: iBatch, se-
quential execution in the default PS (default), and the layer
by layer overlap strategy (layer by layer). The performance
is compared with the ideal linear speedup. Note that the per-
formance metrics do not include DNN model accuracy since
iBatch does not impact the accuracy. iBatch does not change
the synchronization model in PS and it also does not change
any hyperparameters in DNN.

Evaluation
Scalability
Figure 5 plots the scalability with three communication ap-
proaches, in which the layer by layer strategy is not used
to speed up gradient communication and backward compu-
tation. Three approaches achieve almost linear speedup on
throughput when the cluster size is small (the number of n-
odes ≤ 6). The reason is that the number of nodes that share
the cluster network bandwidth is small so that the available
bandwidth for each node is high. Thus, the scalability is not
constrained by the communication time which is much less
than the computation time.

When the cluster size is medium (6 < the number of nodes
≤ 30), the available bandwidth for each node is less than
that in the small clusters and the communication time be-
comes non-negligible compared with the computation time.
Thus, the scalability is constrained by the communication
time. For example, the default PS only achieves 26x, 25x,



(a) GoogLeNet. (b) Inception-V3. (c) VGG19. (d) VGG19-22K.
Figure 5: Speedup vs. number of nodes when training GoogleNet, Inception-V3, VGG19, and VGG19-22K.

(a) Inception-V3. (b) VGG19.
Figure 6: Speedup vs. number of nodes with Gradient Spar-
sification when training Inception-V3 and VGG19.

23x, and 22x speedup on 30 nodes for the four networks.
The scalability with the layer by layer strategy is better than
that with the default PS, achieving 25x, 24x, 22x, and 21x
speedup. Among the three approaches, iBatch achieves has
the best scalability with 29x, 28x, 26x, and 25x speedup. Al-
so, compared with GoogLeNet and Inception-V3, the com-
munication time in VGG19 and VGG19-22K accounts for a
larger part of the total execution time since the two VGG net-
works have a larger size of parameters. Thus, the scalability
of the two VGG networks is worse than that of GoogLeNet
and Inception-V3.

When the cluster size further increases (the number of
nodes > 30), the communication time accounts for an in-
creasingly large part of the total execution time, leading to
the worse scalability. However, the scalability with iBatch is
much better than that with the other two approaches. For in-
stance, iBatch achieves 45x speedup on 72 nodes in VGG19-
22K, 73% improvement over the default PS (26x speedup)
and 41% improvement over the layer by layer strategy (32x
speedup). iBatch has the best performance improvement in
VGG19-22K since the communication time in the network
is larger than that in the other three networks.

Although the scalability with iBatch is much better than
that with the other two approaches, it is not close to the ideal
scalability with linear speedup since the scalability is stil-
l constrained by the gradient communication time. To re-
move the constraint, we apply a simple Gradient Sparsifica-
tion technique (Aji and Heafield 2017) on the gradient com-
munication. Figure 6 further illustrates the scalability with
the technique using two different neural networks. The re-
sult shows that iBatch achieves almost linear speedup on 72
nodes in two networks. Note that there is no technical chal-
lenge for the combination between iBatch and the Gradient
Sparsification technique. iBatch batches parameter commu-
nication and forward computation, which does not impact
gradient communication that can be optimized by the Gradi-

(a) Inception-V3. (b) VGG19.
Figure 7: Execution time decomposed into the overlapping
time, the non-overlapping communication time, and the non-
overlapping computation time in two networks on 72 nodes.

ent Sparsification technique.

Execution Time
Figure 7 plots the normalized execution time ExeT ime
in Inception-V3 and VGG19 when the cluster size is 72.
Specifically, the time is decomposed into the overlapping
time, the non-overlapping communication time, and the non-
overlapping computation time. The result shows that the
overlapping time in the default PS is zero since the com-
munication and the computation are performed sequentially.
The layer by layer strategy can overlap the communication
with the computation to some extent. The overlapping time
in iBatch is longer than that in the layer by layer strategy,
showing that batching the communication and the compu-
tation is more effective in the overlap. Also, since the lay-
er by layer strategy brings significant communication over-
head, its the non-overlapping communication time is longer
than that in iBatch.

Conclusion
In this paper, we propose and design iBatch, a novel com-
munication approach that batches parameter communication
and forward computation to overlap them with each oth-
er. Given a network and a cluster, we first profile the pa-
rameter communication time and the forward computation
time in the network training. Then, we formulate the batch-
ing decision as an optimization problem of execution time
minimization and use greedy algorithm that maximizes the
overlap to solve the problem as well as derive communica-
tion and computation batches. We have implemented iBatch
in the open-source DL framework BigDL and performed e-
valuations with various DL workloads. Experimental results
show that iBatch improves the scalability of a cluster of 72
nodes by up to 73% over the default PS and 41% over the



layer by layer strategy. In future work, we plan to extend
iBatch to other DL frameworks (e.g., TensorFlow).
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